IODINE, A PROTECTING GROUP FOR THE SYNTHESIS OF PSORALEN DERIVATIVES OXYGENATED IN PYRONE RING

SYNTHESIS OF 4,5-DIMETHOXYPSORALEN AND 3,4,5-TRIMETHOXYPSORALEN (HALFORDIN)

V. K. AHLUWALIA,* CHANDRA PRAKASH and R. P. SINGH Department of Chemistry, University of Delhi, Delhi-110007 (India)

(Received in UK 22 March 1979)

Abstract—A convenient synthesis of psoralen derivatives oxygenated in pyrone ring, viz 4,5dimethoxy-7-oxo-7H-furo [3, 2-g] [1] benzopyran (4,5-dimethoxypsoralen) and 4,5,6-trimethoxy-7oxo-7H-furo [3, 2-g] [1] benzopyran (halfordin) (3,4,5-trimethoxypsoralen) is described by blocking the 8-position with iodine, Claisen migration followed by cyclisation.

Halfordin¹ (1) and isohalfordin¹ (2), the chief components of the bark of Halfordia scleroxyla are known examples of 3.4-dimethoxyfuranocoumarins in nature. These compounds have also been isolated² from the related plant *H. kendack*, which also contains halkendin³ (3) and halfordinin⁴ (4), which have an α, α -dimethyl ether linkage at 4position. Hegarty and Lahey¹ first proposed a 3methoxyfuranocoumarin structure (5 or 6) for halfordin on the basis of chemical degradation but later the structure was revised² to 1, based on its ¹H NMR spectrum and confirmed by synthesis.⁵ However the ¹H NMR signal of synthetic halfordin showed⁵ downfield displacement for OMe groups. Hence it was considered of interest to develop a convenient method for its synthesis and other similar psoralen derivatives.

The psoralen derivatives were earlier synthesised⁶⁻¹¹ by tedious methods involving a number of steps with very poor yields. It has been found¹² that Claisen rearrangement of 7-allyloxycoumarin derivatives gives exclusively 8-allyl isomers but if the 8-position is blocked¹³ or the 3,4double bond is reduced,¹⁴ the Claisen migration vields 6-allyl isomers. A number of 4-methyl¹³- and 4-phenyl-¹⁵ psoralen derivatives have been synthesised by blocking the 8-position with a bromide group. These intermediates were obtained by the condensation of 2-bromoresorcinol with ethylacetoacetate and ethylbenzoyl acetate respectively. This method could not be effected for the synthesis of psoralen derivatives oxygenated in the pyrone ring. However, these psoralen derivatives have been synthesised by very tedious methods^{2,5,16,17} involving the use of the corresponding o-hydroxy- $(\omega$ -methoxyacetyl)benzopyran or o-hydroxy- $(\omega$ methoxyacetyl)benzocoumaran as starting materials, both of which are difficult to prepare. A convenient method has now been developed for the synthesis of such compounds by blocking the 8position with an easily introduceable and removable group like iodide. The required intermediates. i.e. 8-iodocoumarin derivatives were prepared by direct iodination of the corresponding 7-hydroxycoumarins with iodine and periodic acid or starting from 2-hydroxy-3-iodoacetophenone derivatives, which can be obtained by iodination of corresponding ketones.

As a test case, 4,5-dimethoxy-7-oxo-7H-furo [3, 2-g] [1] benzopyran (7) was synthesised starting from 7-allyloxy-8-iodo-4,5-dimethoxycoumarin (8), by iodination of 7-hydroxy-4,5-diobtained methoxycoumarin,¹⁸ followed by allylation of the formed 7-hydroxy-8-iodo-4,5-dimethoxycoumarin (9). The structure of 8 was confirmed by comparison with a sample prepared as follows: Iodination of 2,4-dihydroxy-6-methoxyacetophenone¹⁹ gave 2,4-dihydroxy-3-iodo-6-methoxyacetophenone (10) which on allylation afforded 4-allyloxy-2-hydroxy-3-iodo-6-methoxyacetophenone (11). Cyclisation of 11 afforded 7-allyloxyl-4-hydroxy-8iodo-5-methoxycoumarin (12), which on methylation yielded the required coumarin (8). Claisen migration of 8 gave an alkali soluble product, which showed the absence of iodine indicating that iodine was eliminated in the above reaction and was asstructure, signed the 6-allyl-7-hydroxy-4,5dimethoxycoumarin (13). Further evidence that the iodine was eliminated and that the allyl group entered the 6-position was provided by its ¹H NMR spectral data and its non-identity with 8-allyl-7hydroxy-4,5-dimethoxycoumarin (14) prepared as follows: Cyclisation of 4-allyloxy-2-hydroxy-6methoxyacetophenone (15) and methylation of the formed 7-allyloxy-4-hydroxy-5-methoxycoumarin (16) gave 7-allyloxy-4,5-dimethoxycoumarin (17), which on Claisen migration afforded 14. Further support was also given by IR spectra of these isomers, which differed in the aromatic region. Oxidation of 13 with OsO_4 -KIO₄, followed by cyclodehydration of the intermediate phenylacetaldehyde yielded the required 7.

Using the above method, halfordin (1) was synthesised starting from 7-allyloxy-8-iodo-3,4,5-trimethoxycoumarin (18), which was prepared as follows: Iodination of 2,4-dihydroxy-ω,6-dimethoxyacetophenone²⁰ gave 2,4-dihydroxy-3-iodo-w,6dimethoxyacetophenone (19). Cyclisation of its partial allyl ether, viz 4-allyloxy-2-hydroxy-3-iodo- ω .6-dimethoxyacetophenone (20) gave 7-allyloxy-4-hydroxy-8-iodo-3,5-dimethoxycoumarin (21), which on methylation yielded the methyl ether (18). Compound 18 could also be prepared by allylation of 7-hydroxy-8-iodo-3,4,5-trimethoxycournarin (22), which was obtained by direct iodination of 7-hydroxy-3,4,5-trimethoxycoumarin.²

Claisen migration of 18 gave alkali soluble product i.e. 6-allyl-7-hydroxy-3,4,5-trimethoxycoumarin (23). Its structure was confirmed by its ¹H NMR spectral data and non identity with 8-allyl-7hydroxy-3,4,5-trimethoxycoumarin.²⁰ Oxidation of 23 followed by cyclisation of the formed phenyl acetaldehyde with PPA gave the required 1, identical with the synthetic sample obtained earlier.⁵

EXPERIMENTAL

M.ps were determined in a H₂SO₄ bath, IR spectra were recorded on a Perkin-Elmer infracord. ¹H NMR spectra were recorded on a Varian A-60 or on a Perkin-Elmer 90 MHz spectrometer using TMS as an internal standard.

4,5-Dimethoxy-7-oxo-7H-furo [3, 2-g] [1] benzopyran (7)

(a) 7-Allyloxy-8-iodo-4,5-dimethoxycoumarin (8)-Method (A). (i) 7-Hydroxy-8-iodo-4,5-dimethoxycou-(9). 7-Hydroxy-4,5-dimethoxycoumarin¹⁸ marin (1 g) was dissolved in the minimum amount of alcohol and to this soln, I_2 (0.45 g) and periodic acid (0.16 g) in water were added. The mixture was stirred for 2 hr at room temp and then diluted with water to give 9 (1.1 g). It crystallised from alcohol as colourless needles, m.p. 248-50°. (Found: C, 38.1; H, 2.7. C₁₁H₉IO₅ Requires: C, 37.9; H, 2.6%). Acetate (Ac₂O-C₅H₅N), m.p. 129-30°. NMR(CDCl₃): 8 2.39 (s, 3H, 7-OAc); 3.88 and 3.93 (each s, each 3H, 4- and 5- OMe), 5.58 (s, 1H, H3) and 6.61 (s, 1H, H6).

(ii) 7-Allyloxy-8-iodo-4,5-dimethoxycoumarin (8). Compound 9 (1 g) in dry acetone (75 ml) was refluxed for 4-5 hr with allyl bromide (0.3 ml) in presence of anhyd K_2CO_3 (3 g). After filtration and evaporation, the residue was treated with crushed ice to give solid 8 (0.8 g), which crystallised from MeOH as colourless needles, m.p. 215-7° (Found: C, 43.1; H, 3.4. C₁₄H₁₃IO₅ Requires: C, 43.3; H, 3.4%). NMR(DMSO-d₆): δ 3.37 and 3.98 (each s, each 3H, 4- and 5-OMe); 4.97 (d, 2H, J=4.5 Hz, --OCH₂--CH=-CH₂); 5.47 (m, 2H, --OCH₂--CH=-CH₂); 5.85 (s, 1H, H3); 6.16 (m, 1H, --OCH₂--CH=-CH₂) and 6.93 (s, 1H, H6).

Method (B). (i) 2,4-dihydroxy-3-iodo-6-methoxyacetophenone (10). 2,4-Dihydroxy-6-methoxyacetophenone¹⁹ (2 g) was dissolved in the minimum amount of alcohol and to this soln I_2 (1.2 g) and periodic acid (0.4 g in water) were added. The mixture was stirred for 2 hr at 60-70° and then diluted with water to give 10 (2.5 g). This crystallised from AcOH as light yellow needles, m.p. 193-5°. (Found: C, 35.2; H, 3.0. C₉H₉IO₄ Requires: C, 35.0; H, 2.9%). Diacetate (Ac₂O-C₃H₅N), m.p. 107-8°. NMR(CDCl₃); δ 2.26 (s, 3H, -COCH₃); 2.34 and 2.45 (each s, each 3H, 2- and 4-OAc); 3.82 (s, 3H, 6-OMe) and 6.71 (s, 1H, H5).

(ii) 4-Allyloxy-2-hydroxy-3-iodo-6-methoxyacetophenone (11). Compound 10 (2 g) in dry acetone (60 ml) was refluxed for 4-5 hr with allyl bromide (0.6 ml) in presence of anhyd K₂CO₃ (6 g). After filtering and evaporation, the residue was dissolved in EtOAc and the soln extracted with 10% NaOHaq (200 ml). Acidification of the clear alkaline soln yielded 11 (1.3 g), which crystallised from MeOH-Me₂CO as pale yellow shining needles, m.p. 162-4°. (Found: C, 41.5; H, 3.6. C₁₂H₁₃IO₄ Requires: C, 41.4; H, 3.7%). NMR(CDCl₃): δ 2.58 (s, 3H, -COCH₃); 3.88 (s, 3H, 6-OMe); 4.63 (d, 2H, J = 5 Hz, -OCH₂-CH=CH₂); 5.41 (m, 2H, -OCH₂-CH=CH₂); 5.93 (s, 1H, H5); 6.01 (m, 1H, -OCH₂-CH=CH₂) and 15.13 (s, 1H, -OH, exchangeable with D₂O).

(iii) 7-Allyloxy-4-hydroxy-8-iodo-5-methoxycoumarin (12). A soln of 11 (1 g) in diethyl carbonate (15 ml) was heated with pulverised Na (0.5 g) for 4 hr on a boiling water bath. The mixture was cooled and diluted with water. Ether was added in excess and the aqueous layer separated. Acidification of this layer yielded 12 (0.7 g), which crystallised from EtOAc-benzene as yellow shining prisms, m.p. 154-6°. (Found: C, 41.6; H, 3.1. $C_{13}H_{11}IO_5$ Requires: C, 41.7; H, 2.9%). Acetate (Ac₂O-C₅H₃N), m.p. 183-4°. NMR(CDCl₃): 8 2.28 (s, 3H, 4-OAc); 3.87 (s, 3H, 5-OMe); 4.67 (d, 2H, J=4.5 Hz, -OCH₂-CH=CH₂); 5.44 (m, 2H, -OCH₂-CH=CH₂); 5.86 (s, 1H, H3); 5.94 (m, 1H, -OCH₂-CH=CH₂) and 6.30 (s, 1H, H6).

(iv) 7-Allyloxy-8-iodo-4,5-dimethoxycoumarin (8). The above 12 (1 g) in dry Me₂CO (75 ml) was methylated with Me₂SO₄ (0.3 ml) to give 8 (0.7 g). It crystallised from MeOH as colourless needles, m.p. 215-7° (Found: C, 43.0; H, 3.5. $C_{14}H_{13}IO_5$ Requires: C, 43.3; H, 3.4%).

(b) 6-Allyl-7-hydroxy-4,5-dimethoxycoumarin (13). Compound 8 (1g) was refluxed for 6 hr with N,Ndimethyl aniline (8 ml) under N₂. The mixture was cooled and poured into ice cold HCl. The separated solid was treated with dil. NaOHaq and the soln filtered. The filtrate on acidification yielded 13 (0.5 g), which crystallised from MeOH as colourless needles, m.p. 227-9° (Found: C, 67.8; H, 4.6. $C_{14}H_{14}O_5$ Requires: C, 67.6; H, 4.8%). NMR(CD₃COCD₃): δ 3.77 (d, 2H, J = 7 Hz, --CH₂--CH=CH₂); 3.92 and 4.02 (each s, each 3H, 4- and 5-OMe); 5.15 (m, 2H, --CH₂---CH=-CH₂); 5.91 (m, 1H, --CH₂---CH=-CH₂); 6.16 (s, 1H, H3) and 6.58 (s, 1H, H8).

(c) 4,5-Dimethoxy-7-oxo-7H-furo [3, 2-g] [1] benzopyran (7). The above 13 (200 mg) in EtOAc (80 ml) and an equal amount of water was oxidised with OsO4 (60 mg) and the mixture stirred for $1\frac{1}{2}$ hr. During this period KIO₄ (2 g) was added in small portions. The above mixture was stirred for a further 2 hr, the EtOAc layer separated and the aqueous soln extracted with more EtOAc. The combined EtOAc extract was washed with water, dried (Na₂SO₄) and distilled. The residue was heated on a boiling water bath with polyphosphoric acid (10 ml) for 30 min and then poured over cruched ice. The separated solid was taken up in ether; the ether extract washed successively with Na_2CO_3 aq (5%, 50 ml) and water, dried (Na_2SO_4) and distilled. The residue was crystallised from benzene-petroleum ether (60-80°) to give 7 (100 mg) as colourless needles, m.p. 144-6°. (Found: C, 63.1; H, 4.4. C₁₃H₁₀O₅ Requires: C, 63.4; H, 4.1%). NMR(CDCl₃): 8 3.93 and 4.02 (each s, each 3H, 4- and 5-OMe); 5.60 (s, 1H, H6); 6.92 (dd, 1H, $J_{\beta,\alpha} =$ 2.5 Hz, $J_{\beta,\varrho} = 1$ Hz, $H\beta$; 7.21 (d, 1H, $J_{\varrho,g} = 1$ Hz, H β) and 7.57 (d, 1H, $J_{\alpha,\beta} = 2.5$ Hz, $H\alpha$). IR: ν_{max}^{KBr} (cm⁻¹) 1715 (\bigcirc - \bigcirc), 1600 (\bigcirc - \bigcirc), 1100 and 810 (furan ring).

8-Allyl-7-hydroxy-4,5-dimethoxycoumarin (14)

(a) 4-Allyloxy-2-hydroxy-6-methoxyacetophenone (15). 2,4-Dihydroxy-6-methoxyacetophenone¹⁹ (2 g) in dry Me₂CO (100 ml) was refluxed for 5 hr with allyl bromide (1.04 ml) in presence of anhyd K₂CO₃ (6 g). Working up of the mixture gave 15 (1.5 g). It crystallised from MeOH as colourless shining needles, m.p. 74-6° (Found: C, 64.7; H, 6.4. C₁₂H₁₄O₄ Requires: C, 64.9; H, 6.3%). NMR(CDCl₃): δ 2.57 (s, 1H, --COCH₃); 3.83 (s, 3H, 6-OMe); 4.51 (d, 2H, J=5 Hz, --OCH₂--CH=-CH₂); 5.44 (m, 2H, --OCH₂--CH=-CH₂); 5.90 (m, 1H, --OCH₂--CH=-CH₂); 5.94 and 6.01 (each d, each 1H, J=2.5 Hz each, H3 and H5) and 15.10 (s, 1H, --OH, exchangeable with D₂O).

(b) 7-Allyloxy-4-hydroxy-5-methoxycoumarin (16). A soln of above 15 (1 g) in Et_2CO_3 (10 ml) was added to a suspension of NaOMe (prepared from 0.2 g Na) in Et_2CO_3 (10 ml). The mixture was heated for 4 hr on a boiling water bath. Work up gave 16 (0.8 g). It crystallised from EtOAc-benzene as colourless prisms, m.p. 228-30°. (Found: C, 63.1; H, 4.6. $C_{13}H_{12}O_5$ Requires: C, 62.9; H, 4.8%).

(c) 7-Allyloxy-4,5-dimethoxycoumarin (17). Methylation of 16 (1g) in Me₂CO (50 ml) with Me₂SO₄ (0.45 ml) in presence of anhyd K₂CO₃ yielded 17 (0.85 g). It crystallised from MeOH as colourless needles, m.p. 147-9°. (Found: C, 67.4; H, 4.9. $C_{14}H_{14}O_3$ Requires: C, 67.6; H, 4.8%). NMR(CDCl₃): 3.87 and 3.92 (each s, each 3H, 4- and 5-OMe); 4.47 (d, 2H, J = 4.5 Hz, --OCH₂--CH=-CH₂); 5.38 (m, 2H, --OCH₂--CH=-CH₂); 5.46 (s, 1H, H3); 5.94 (m, 1H, --OCH₂--CH=-CH₂) and 6.31 and 6.40 (each d, each 1H, J = 2.5 Hz, H6 and H8).

(d) 8-Allyl-7-hydroxy-4,5-dimethoxycoumarin (14). The above 17 (0.5 g) was heated in an oil bath at 190-5° for 2 hr under reduced pressure. The cooled product was dissolved in ether and extracted with NaOH soln (1%, 20 ml). Acidification of the clear alkaline soln yielded 14 (0.2 g). It crystallised from MeOH as colourless needles, m.p. 220-2°. (Found: C, 67.3; H, 4.7. $C_{14}H_{14}O_5$ Requires: C, 67.6; H, 4.8%). NMR (CD₃COCD₃): δ 3.67 (d, 2H, J=7 Hz, --CH₂--CH=-CH₂); 3.83 and 3.93 (each s, each 3H, 4- and 5-OMe); 5.10 (m, 2H, -CH₂--CH=-CH₂); 6.37 (s, 1H, H3) and 6.56 (s, 1H, H6).

4,5,6-Trimethoxy-7-oxo-7H-juro [3, 2-g] [1] benzopyran (halfordin) (1)

(a) 7-Allyloxy-8-iodo-3,4,5-trimethoxycoumarin (18). Method (A). (I) 2,4-dihydroxy-3-iodo- ω ,6-dimethoxyacetophenone (19). Iodination of 2,4-dihydroxy- ω ,6dimethoxyacetophenone²⁰ (2 g) with I₂ (1 g) and periodic acid (0.35 g) yielded 18 (2.5 g). It crystallised from AcOH as colourless needles, m.p. 191-3°. (Found: C, 35.6; H, 3.1. C₁₀H₁₁IO₅ Requires: C, 35.5; H, 3.3%). Diacetate (Ac₂O-C₅H₅N), m.p. 112-4°. NMR(CDCI₃): 8 2.28 and 2.35 (each s, each 3H, 2- and 4-OAC); 3.43 (s, 3H, -COCH₂OCH₃); 3.81 (s, 3H, 6-OMe); 4.40 (s, 2H, --COCH₂OCH₃) and 6.70 (s. 1H, H5).

(ii) 4-Allyloxy-2-hydroxy-3-iodo- ω .6-dimethoxyacetophenone (20). Compound 19 (2 g) in dry Me₂CO (60 ml) was refluxed for 4-5 hr with allyl bromide (0.65 ml) in presence of anhyd K₂CO₃ (6 g). Working up of the mixture gave 20 (1.2 g). It crystallised from MeOH-Me₂CO as colourless shining needles, m.p. 167-8°. (Found: C, 41.5; H, 4.2. C₁₃H₁₃IO₅ Requires: C, 41.3; H, 4.0%). NMR(CDCl₃): 8 3.48 (s, 3H, -COCH₂OCH₃); 3.90 (s, 3H, 6-OMe); 4.53 (s, 2H, -COCH₂OCH₃); 3.90 (s, 3H, 6-OMe); 5.90 (s, 1H, H5); 6.25 (m, 1H, -OCH₂--CH=CH₂); 5.90 (s, 1H, H5); 6.25 (m, 1H, -OCH₂--CH=CH₂) and 14.44 (s, 1H, --OH, exchangeable with D₂O).

(iii) 7-Allyloxy-4-hydroxy-8-iodo-3,5-dimethoxycoumarin (21). A soln of 20 (1 g) in Et_2CO_3 (15 ml) was heated with pulverised Na (0.5 g) for 4 hr on a boiling water bath. Working up of the mixture yielded 21 (0.7 g). It crystallised from EtOAc-benzene as light yellow prisms, m.p. 225-7°. (Found: C, 41.3; H, 3.3. $C_{14}H_{13}IO_6$ Requires: C, 41.6; H, 3.2%). Acetate (Ac₂O-C₃H₃N), m.p. 211-3°. NMR(CDCl₃): δ 2.25 (s, 3H, 4-OAc); 3.80 and 3.90 (each s, each 3H, 3- and 5-OMe); 4.61 (d, 2H, J = 4.5 Hz, $-OCH_2$ -CH=CH₂); 5.41 (m, 2H, $-OCH_2$ -CH=CH₂); and 6.10 (s, 1H, H6).

(iv) 7-Allyloxy-8-iodo-3,4,5-trimethoxycoumarin (18). The above 21 (1 g) in dry Me₂CO (75 ml) was methylated with Me₂SO₄ (0.25 ml) in presence of K₂CO₃ (3 g) to give 18 (0.7 g). It crystallised from MeOH as colourless shining needles, m.p. 138-40°. (Found: C, 42.9; H, 3.5. C₁₅H₁₅IO₆ Requires: C, 43.1; H, 3.6%). NMR(CDCl₃): 8 3.71 and 3.75 (each s, each 3H, 4- and 5-OMe); 4.05 (s, 3H, 3-OMe); 4.63 (d, 2H, J=4.5 Hz, $-OCH_2--$ CH=CH₂); 5.41 (m, 2H, $-OCH_2--$ CH=CH₂); 5.94 (m, 1H, $-OCH_2--CH=-CH_2$) and 6.31 (s, 1H, H6).

Method (B). (I) 7-Hydroxy-8-iodo-3,4,5-trimethoxy-

coumarin (22). Iodination of 7-hydroxy-3,4,5-trimethoxycoumarin²¹ (1g) with I₂ (0.45 g) and periodic acid (0.15 g) yielded 22 (1.1 g). It crystallised from alcohol as colourless shining needles, m.p. 212-4°. (Found: C, 38.0; H, 2.7. $C_{12}H_{11}IO_6$ Requires: C, 38.1; H, 2.9%). Acetate (AC₂O-C₅H₃N), m.p. 180-2°. NMR(CDCI₃): 8 2.37 (s, 3H, 7-OAc); 3.78 (s, 6H, 4- and 5-OMe); 4.08 (s, 3H, 3-OMe) and 6.60 (s, 1H, H6).

(ii) 7-Allyloxy-8-iodo-3,4,5-trimethoxycoumarin (18). Compound 22 (1 g) in dry Me₂CO (50 ml) was refluxed for 4-5 hr with allyl bromide (0.26 ml) in presence of anhyd K₂CO₃ (3 g). Work up gave 18 (0.7 g), which crystallised from MeOH as shining needles, m.p. 138-40°. (Found: C, 43.2; H, 3.7. $C_{15}H_{15}IO_6$ Requires: C, 43.1; H, 3.6%).

(b) 6-Allyl-7-hydroxy-3,4,5-trimethoxycoumarin (23). Compound 18 (1 g) was refluxed for 6 hr with N,N-dimethylaniline (7 ml) under N₂. Working up of the mixture yielded 23 (0.4 g). It crystallised from MeOH as colourless needles, m.p. 224-6°. (Found: C, 61.7; H, 5.3. $C_{15}H_{16}O_6$ Requires: C, 61.6; H, 5.5%). NMR(CD₃COCD₃): δ 3.58 (d, 2H, J=7 Hz, --CH₂--CH=CH₂); 3.70 and 3.74 (each s, each 3H, 4- and 5-OMe); 4.03 (s, 3H, 3-OMe); 5.13 (m, 2H, --CH₂--CH=CH₂); 5.95 (m, 1H, --CH₂---CH=CH₂) and 6.57 (s, 1H, H8).

(c) 4,5,6-Trimethoxy-7-oxo-7H-furo [3, 2-g] [1] benzopyran (halfordin) (1). The above 23 (100 mg) in EtOAc (40 ml) and an equal amount of water was oxidised with OsO₄ (30 mg) and KIO₄ (1 g). Work up yielded the intermediate phenylacetaldehyde, which cyclised with PPA (5 ml) to give 1 (50 mg). It crystallised from benzene-petroleum ether as colourless needles, m.p. 136-8°. (lit.⁵ m.p. 136-7°) (Found: C, 60.7; H, 4.1. C₁₄H₁₂O₆ Requires: C, 60.9; H, 4.4%). NMR(CDCl₃): δ 3.92 and 4.03 (each s, each 3H, 4- and 5-OMe); 4.21 (s, 3H, 6-OMe); 6.94 (dd, 1H, J_{g,a} = 2.5 Hz, J_{g,9} = 1 Hz, Hβ); 7.23 (d, 1H, J_{0.9} = 1 Hz, H9) and 7.62 (d, 1H, J_{a.9} = 2.5 Hz, Hα). IR: $\nu_{\text{MBX}}^{\text{KBY}}$ (cm⁻¹) 1720 (\bigcirc C=O), 1610 (\bigcirc C=C), 1080 and 770 (furan ring).

Acknowledgement---Our thanks are due to the CSIR, New Delhi for the financial help to one of us (RPS).

REFERENCES

- ¹M. P. Hegarty and F. N. Lahey, Aust. J. Chem. 9, 120 (1956).
- ²F. N. Lahey and J. K. MacLeod, Tetrahedron Letters 447 (1968).
- ³M. Nakyama, S. Fujimoto and J. K. MacLeod, Aust. J. Chem. 24, 209 (1971).
- ⁴J. K. MacLeod, Tetrahedron Letters 1319 (1970).
- ⁵S. Bhanu, T. Saroja, T. R. Seshadri and S. K. Mukerjee, Indian J. Chem. 9, 380 (1971).
- ⁶E. Späth, B. L. Manjunath, M. Pailer and H. S. Jois, Ber. Disch Chem. Ges. **69**, 1087 (1936).
- ⁷R. T. Foster, A. Robertson, A. Bushra, D. B. D. Mckenzy and J. V. Heaty, J. Chem. Soc. 2254 (1948).
 ⁸E. C. Horning and D. B. Risner, J. Am. Chem. Soc. 70, 3619 (1948); 72, 1514 (1950).
- ^oT. R. Seshadri and M. S. Sood, Indian J. Chem. 1, 29 (1963).
- ¹⁰D. K. Chatterjee and K. Sen, Sci. Cult. 33, 528 (1967).
- ¹¹L. R. Warden, K. D. Kaufman, J. A. Weis and T. K. Schaff, J. Org. Chem. 34, 2311 (1969).
- ¹²B. Krishnaswamy and T. R. Seshadri, Proc. Ind. Acad. Sci. 13A, 43 (1941).
- ¹³N. H. Pardanani and K. N. Trivedi, Aust. J. Chem. 25, 1537 (1972).
- ¹⁴A. Roy, A. D. Gupta and K. Sen, Indian J. Chem. **12**, 564 (1974).
- ¹⁵K. R. Shah and K. N. Trivedi, Aust. J. Chem. 27, 1971 (1974).

- ¹⁶K. Fukui, M. Nakayama, S. Fujimoto and O. Fukuda,
- R. Fuldi, W. Fullyana, S. Fujinoto and C. Fullula, Experientia 25, 354 (1969).
 ¹⁷S. Bhanu, T. Saroja, T. R. Seshadri and S. K. Mukerjee, Indian J. Chem. 10, 16 (1972).
- ¹⁸V. K. Ahluwalia, Nimmi Rani and Ranjana Gupta, Indian J. Chem. 17B (1979) under publication.
- ¹⁹B. S. Bajwa, Pyare Lal and T. R. Seshadri, Indian J. ²⁰V. K. Ahluwalia and Chandra Prakash, *Ibid.* **14B**, 423
- (1976). ²¹V. K. Ahluwalia and Chandra Prakash, *Ibid.* 14B, 858
- (1976).